Linear Algebra on Lattices: Simit Language Extensions with Applications to Lattice QCD
نویسندگان
چکیده
This thesis presents language extensions to Simit, a language for linear algebra on graphs. Currently, Simit doesn’t efficiently handle lattice graphs (regular grids). This thesis defines a stencil assembly construct to capture linear algebra on these graphs. A prototype compiler with a Halide backend demonstrates that these extensions capture the full structure of linear algebra applications operating on lattices, are easily schedulable, and achieve comparable performance to existing methods. Many physical simulations take the form of linear algebra on lattices. This thesis reviews Lattice QCD as a representative example of such a class of applications and identifies the structure of the linear algebra involved. In this application, iterative inversion of the Dirac matrix dominates the runtime, and time-intensive handoptimization of inverters for specific forms of the matrix limit further research. This thesis implements this computation using the language extensions, while demonstrating competitive performance to existing methods. Thesis Supervisor: Saman Amarasinghe Title: Professor
منابع مشابه
EQ-logics with delta connective
In this paper we continue development of formal theory of a special class offuzzy logics, called EQ-logics. Unlike fuzzy logics being extensions of theMTL-logic in which the basic connective is implication, the basic connective inEQ-logics is equivalence. Therefore, a new algebra of truth values calledEQ-algebra was developed. This is a lower semilattice with top element endowed with two binary...
متن کاملOn residuated lattices with universal quantifiers
We consider properties of residuated lattices with universal quantifier and show that, for a residuated lattice $X$, $(X, forall)$ is a residuated lattice with a quantifier if and only if there is an $m$-relatively complete substructure of $X$. We also show that, for a strong residuated lattice $X$, $bigcap {P_{lambda} ,|,P_{lambda} {rm is an} m{rm -filter} } = {1}$ and hence that any strong re...
متن کاملDIRECTLY INDECOMPOSABLE RESIDUATED LATTICES
The aim of this paper is to extend results established by H. Onoand T. Kowalski regarding directly indecomposable commutative residuatedlattices to the non-commutative case. The main theorem states that a residuatedlattice A is directly indecomposable if and only if its Boolean center B(A)is {0, 1}. We also prove that any linearly ordered residuated lattice and anylocal residuated lattice are d...
متن کاملAlgebraic Properties of Intuitionistic Fuzzy Residuated Lattices
In this paper, we investigate more relations between the symmetric residuated lattices $L$ with their corresponding intuitionistic fuzzy residuated lattice $tilde{L}$. It is shown that some algebraic structures of $L$ such as Heyting algebra, Glivenko residuated lattice and strict residuated lattice are preserved for $tilde{L}$. Examples are given for those structures that do not remain the sam...
متن کاملDistributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کامل